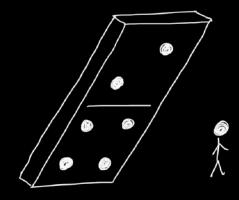
Metaphysics (MetaPhysics? Meta Physics?)

Idea: sculpture of giant dominoes made up of dice



- Standard dominoes are 17/8" × 15/16" × 1/4" - Say I want this to be 12' tall. The dimensions would be 144" × 72" × 19.2" = 12' × 6' × 19.2" = 365.76 cm × 182.88 cm × 48.768 cm

- For 10×10×10mm dice: - Each is 1000 mm³

- To fill volume: 3,262,100.73 dice

See spreadsheet I made (in Numbers)

Title ideas:

Metaphysics

- Unmoved mover
- First cause / Final cause
- Probably inevitable / Probable inevitability
- Inevitable probability

https://m.alibaba.com/product/62184621859/Wholesale-12mm-14mm-16mm-18mm-20mm.html? ____detailProductImg=https%3A%2F%2Fs.alicdn.com%2F%40sc01%2Fkf%2FHTB1FW.UeoGF3KVjSZ Fvq6z_nXXa2.jpg_200x200.jpg

Email these people to learn about how universities pick art installations: https://news.stanford.edu/ 2021/04/21/alicja-kwade-site-specific-installation-stanford-science-engineering-quad-suggestsalternate-realities/

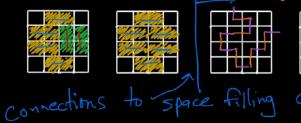
9/15/2021:

- Use a Mineeraft pixel circle generator to easily see what circles made of squares look like - Suppose the diameter of a dot is about 1/8 the height of a domino face - Suppose I make 4x4 dice circles for the dots (in a small model) I as make as I can go - Then, the dimensions of the model in like dice should be . - between dot rows - dot: 4x4 - | between upper -height: 323 and loner edges and dot rows and left/right edges and dot colums - width: 16 - depth: 46 accomodate middle 16×0.63 33×0.63" 10.08"× 20.79"

ا او در او در او او او او او او - Total dice needed: - to fill volume: 2,112 1,2 -> 50b, H9th 1288 - to cover surface ! 1,3 -> 626, H82w 1276 1, 4 -> 746, 1170~ 1269 1,5-> 86b, 1158w 1252 faces (33×16×2) 1,6-986, 14/62 1240 2,3->746, 11702 1261 2,4->866, 45800 1252 long short sides + (33×24×2) 2,5→98b, 1146w 1240 2,6->110b, 439w 122 3,4- 986, 4400 1240 [14 + 12*(# dots)] $+(|4\times24\times2)$ 3,5->110b, 434~ 122 3,6 -> 1226, 422w 126 black 4,5-> 1226, +12200 1216 = 1244 4,6->1346 2400 1204 rest -5,6 -> 1466, 2098~ 1292 - # black dice: 12 + (# dots) +14 (for middle line) FOR DICE OF DOMINOES:

12

1.0-



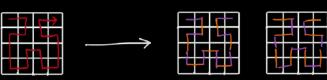
L

لیا لیا لیا لیا

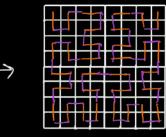
h.

-11

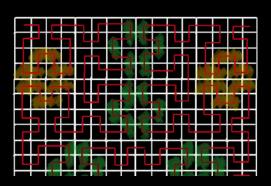
4



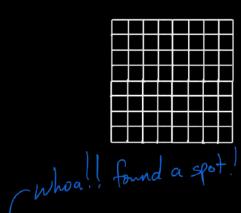
111



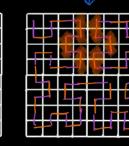
1	T	-		F		-	I				
		Ē	-1	Ļ	1	1	Ļ				
		I.	1	Ē	1	Г					
	1		1	l.,		Ĺ	1				
L	1		-			r	1				
r	4	L	1	r	J	L	٦				
	C	4				T					
-	1	Ŀ	-		4	L	Ц				
-{-	5		5	_		L					

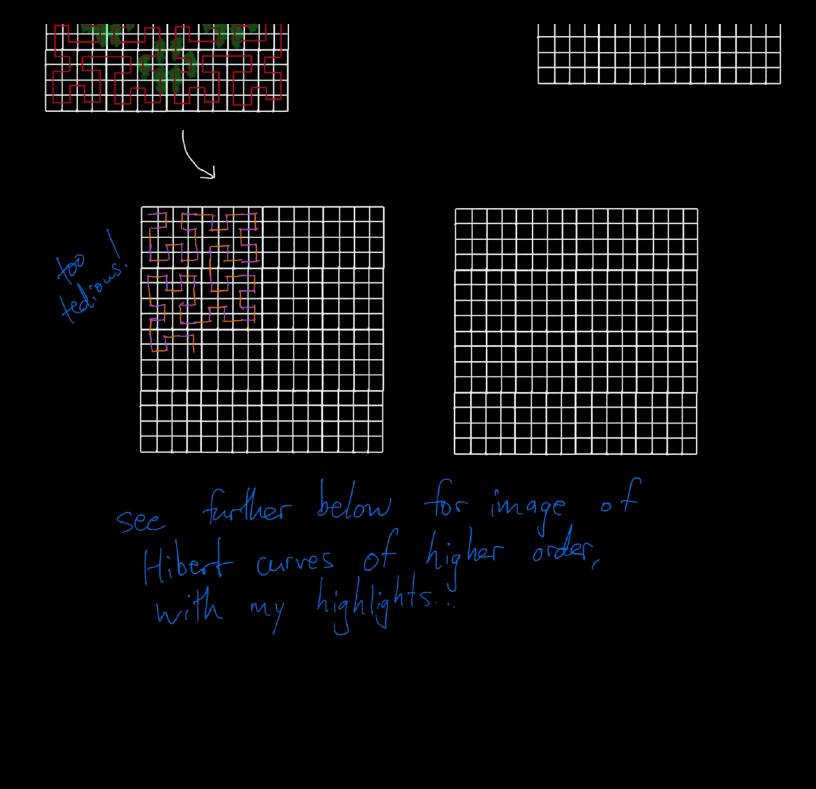


			_				

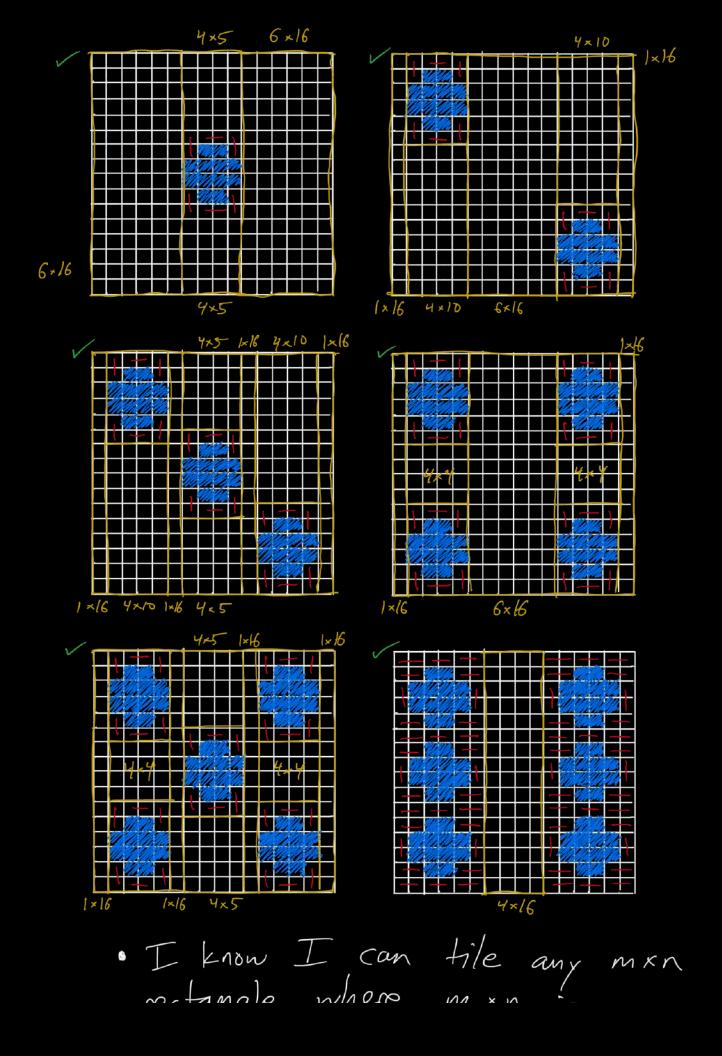


12

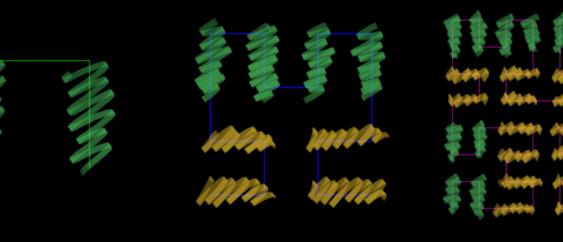


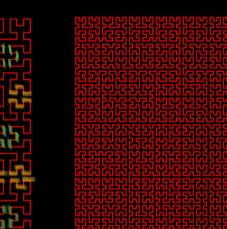


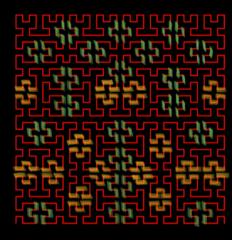
- let me make sure I could tike around the dots...

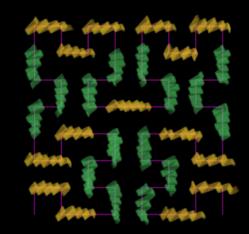


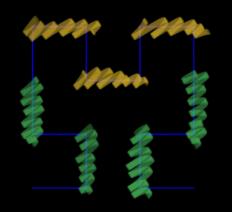
reclarge man minne 's even · So, a good strategy is tiling and the dots until I have nothing but such regions left filing around - Total dominoes needed: - to cover surface: $[(16 \times 16) \div 2] \times 6$ to line edges, to lock < + (16÷2)×8 cover w fit = 832 706 126, white black OR w/o line edges: 768 126 642 black white

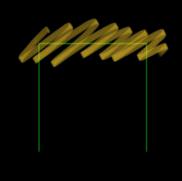


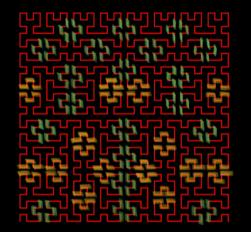


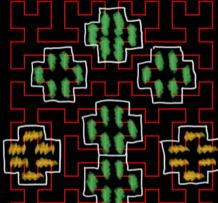


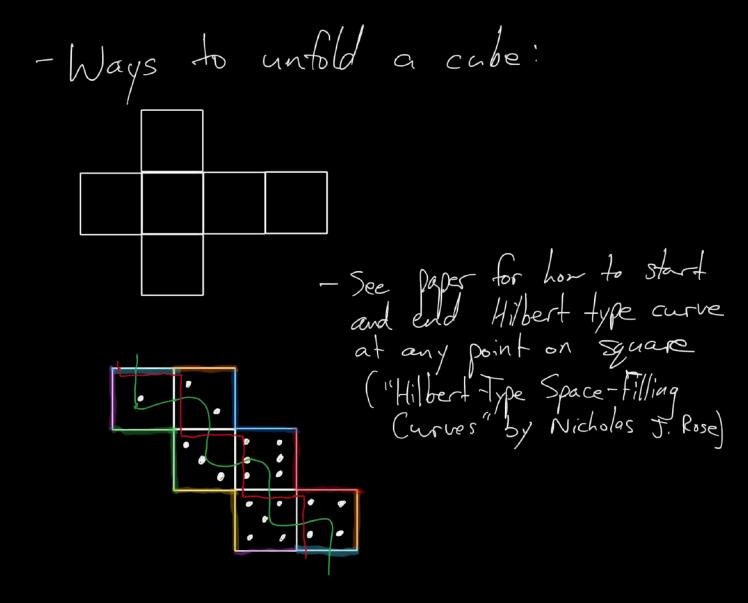






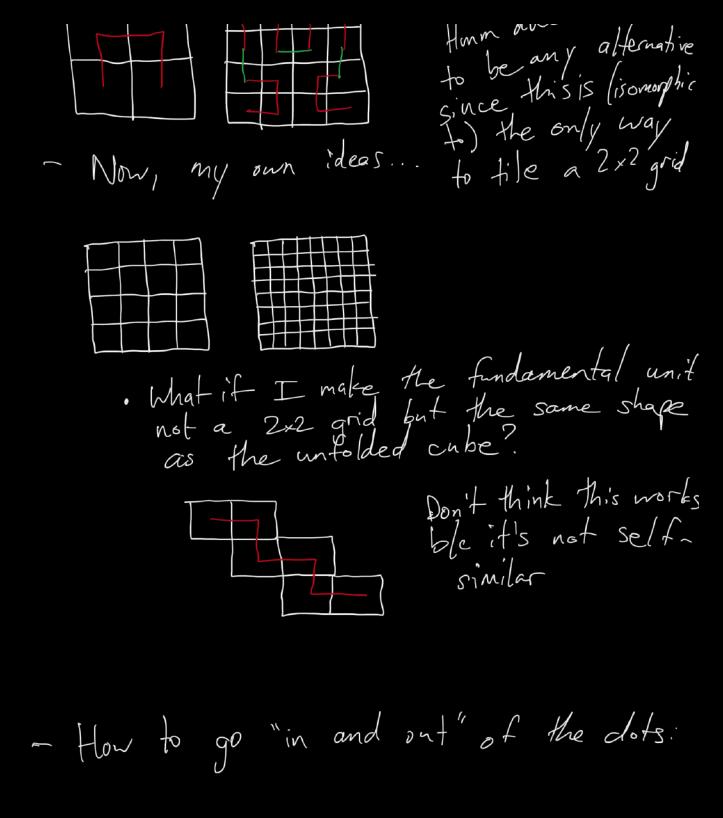


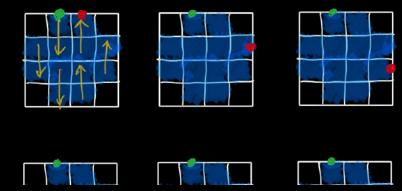


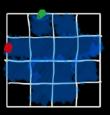


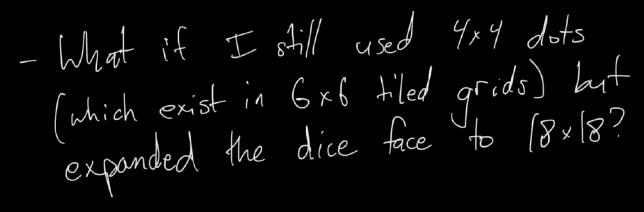
- Standard domino set: [0,0]

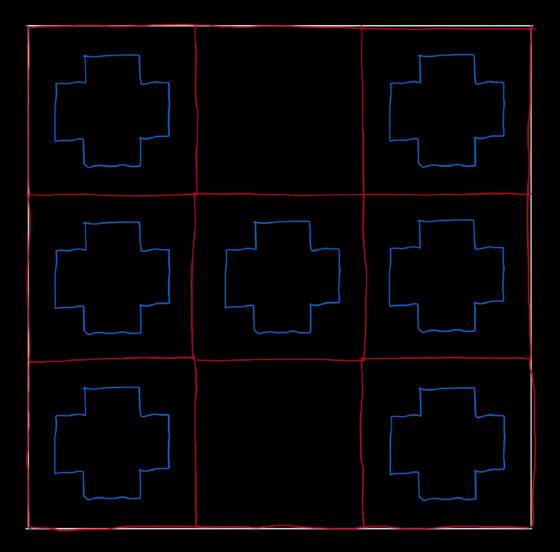
$$\begin{cases} [0,1], [1,2], [1,2], [2,2] \\ [0,2], [1,2], [2,3], [3,3] \\ [0,3], [1,3], [2,3], [3,4], [4,4] \\ [0,4], [1,4], [2,4], [3,4], [4,4] \\ [0,5], [1,5], [2,5], [3,5], [4,5], [5,5] \\ [0,6], [2,6], [2,6], [3,6], [4,6], [5,6], [5,6] \\ 21 \\ \# zeroes: 8 \\ \# dres: 8 \\ \# dres: 8 \\ \# dres: 8 \\ \# dres: 8 \\ \# fives: 8 \\ \# fives: 8 \\ \# fives: 8 \\ \# sixes: 8 \\ \# sixes: 8 \\ \# sixes: 8 \\ \# sixes: 8 \\ \# defer understanding the Hilbert \\ construction: \end{cases}$$



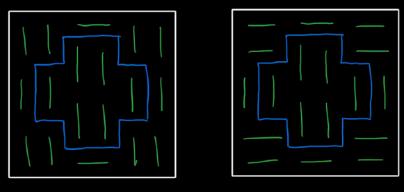


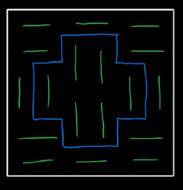


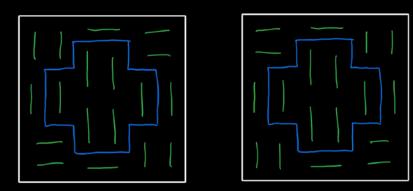


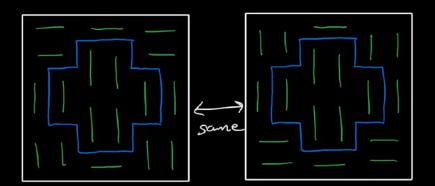


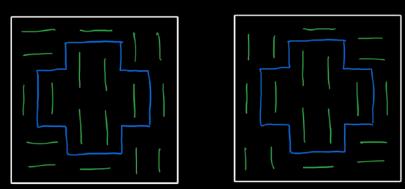
Car I find a fundamental unit?

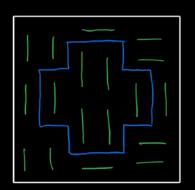


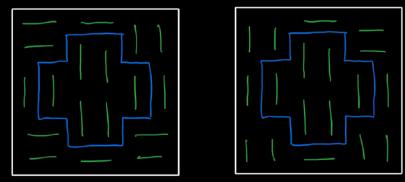


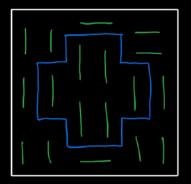


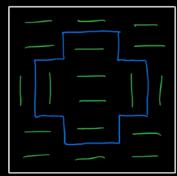


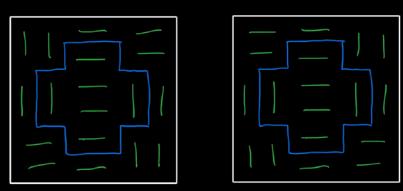


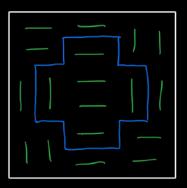


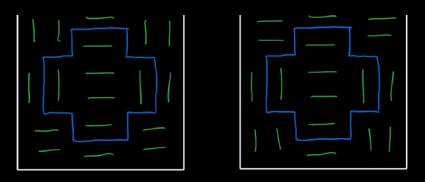




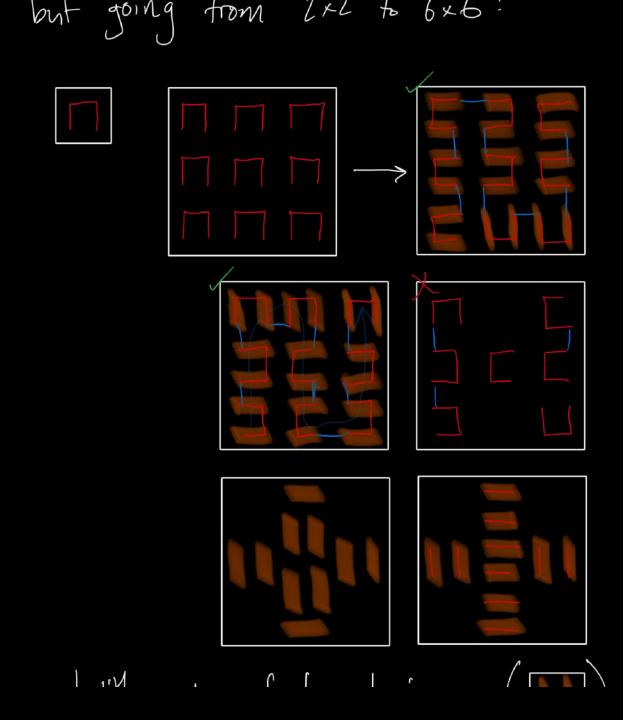




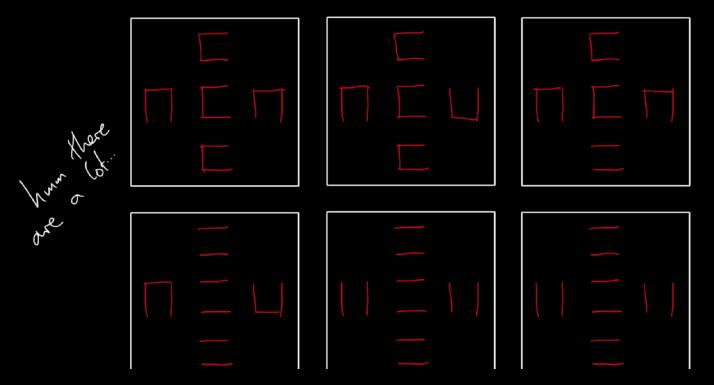


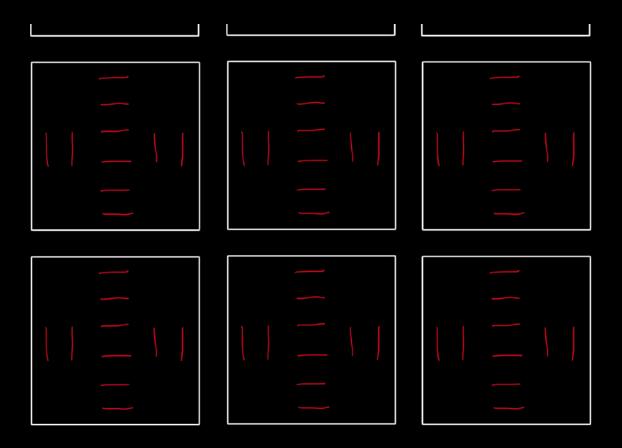


- Let me try a Hilbert Style approach, but going from 2×2 to 6×6:

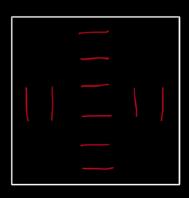


With pairs of two dominoes there are only these options: K Jostabions So there's actually only one. This means these are the options for configs of Hilbert "u"s: (up to rotational symmetry).

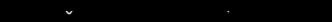


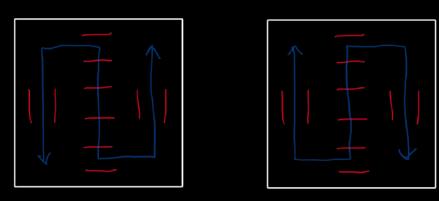


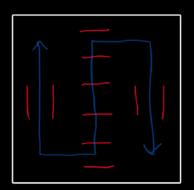
Let me take a step back and start with just this:

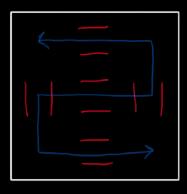


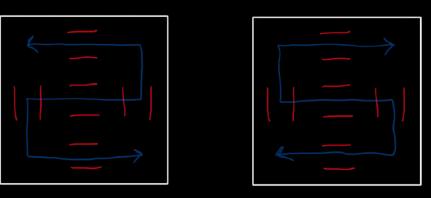
Here are the directional paths "through" this, up to rotational symmetry:

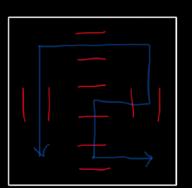


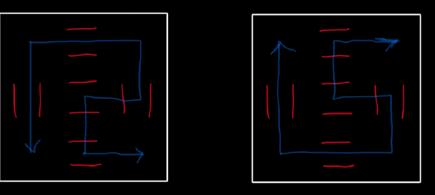


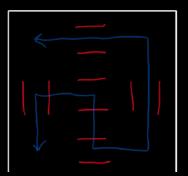


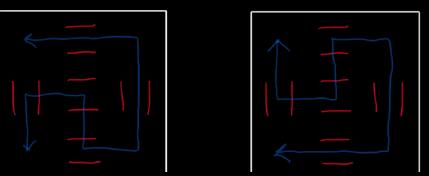






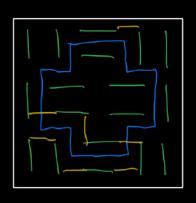


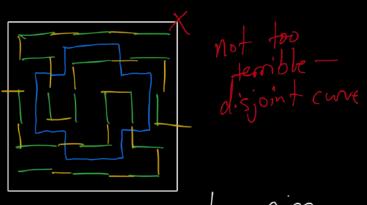


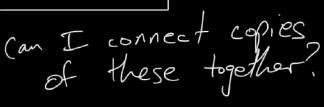


Oh no! This is basically a prost of impossibility, since doesn't work and every path has one of those.

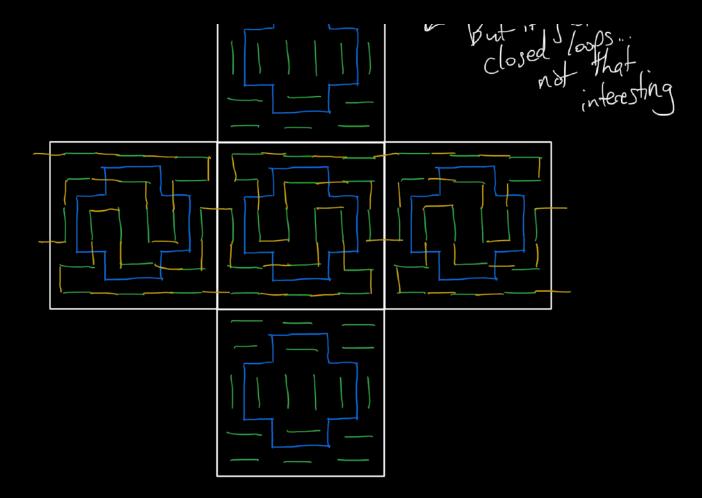
What if I make the fundamental unit a 6x6 with a dot and scale up x3 from there?



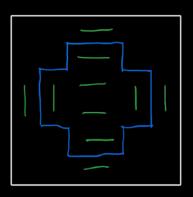




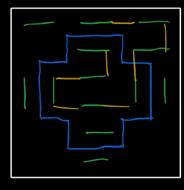
horizontally, yes.



I need to find a path through a square with a dot... let one start with that singular arrangement of domino Square pairs...

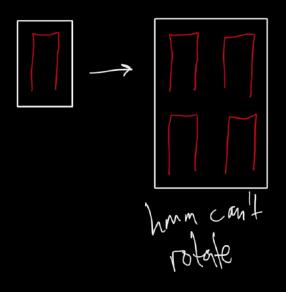


Can I find a path through this?

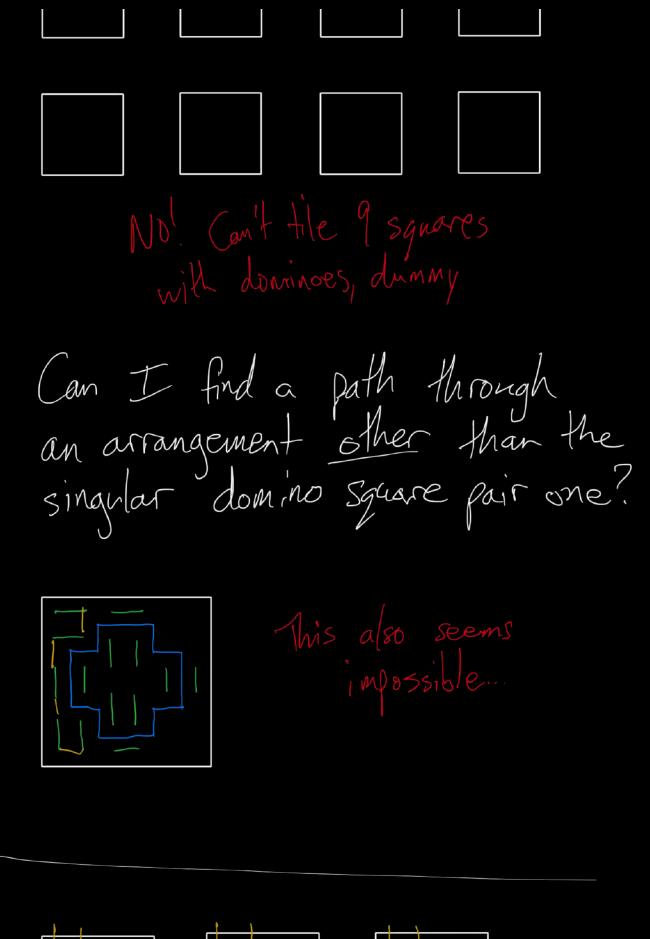


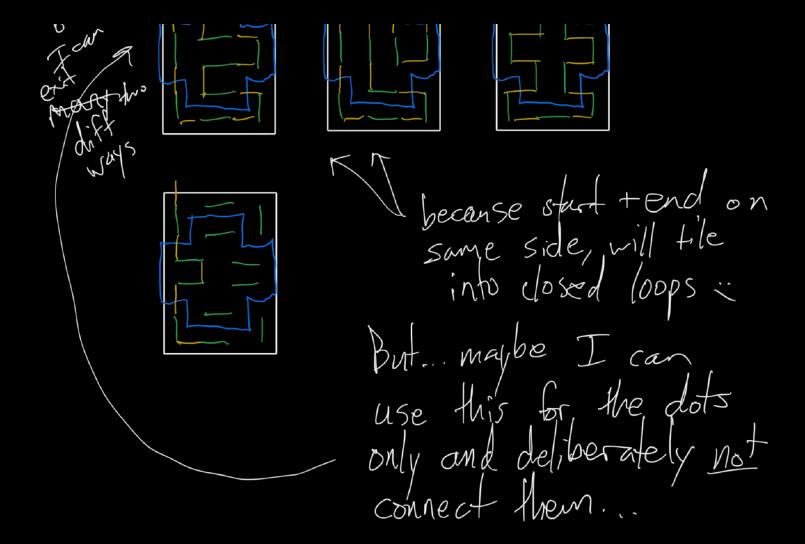
Starting to think this just isn't possible

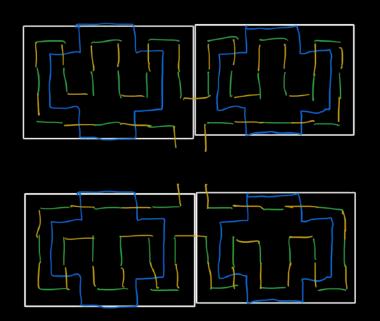
What if I use a modified, rectangular Hilbert curve and scale from 2×3 to 4×6?



What if I start with 3x3?



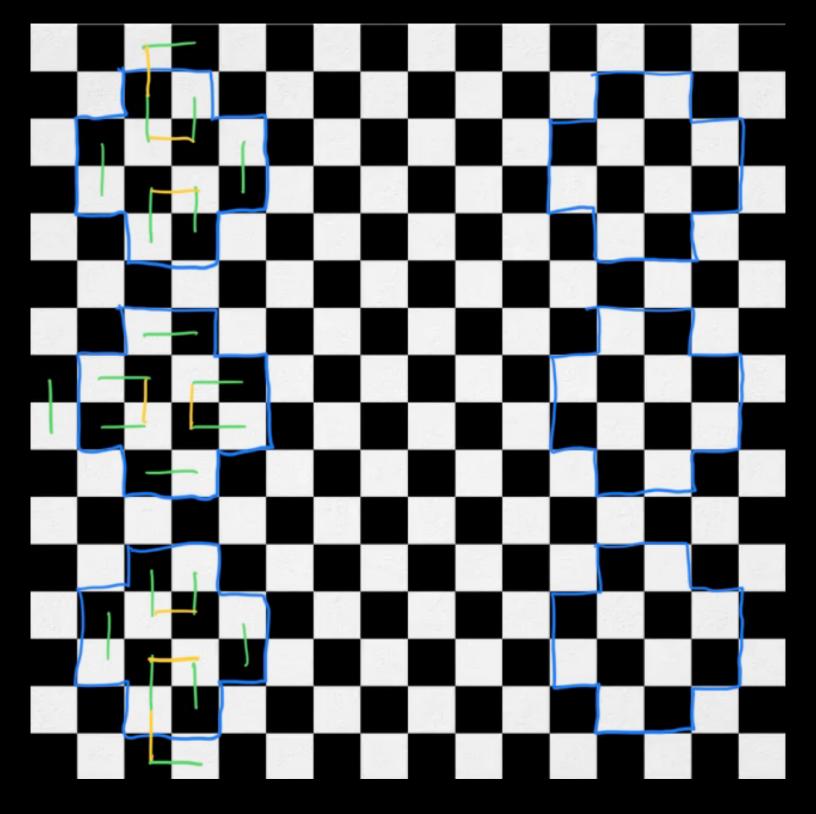




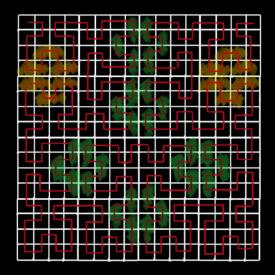


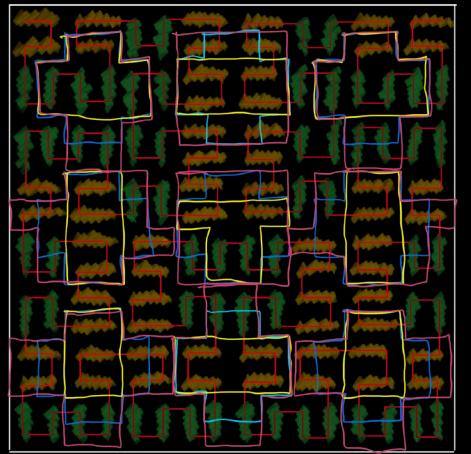
http://gambiter.com/domino/western/math.html

La useful reference Maybe I can use results about single and circular domino trains, and about tiling checkerboards...

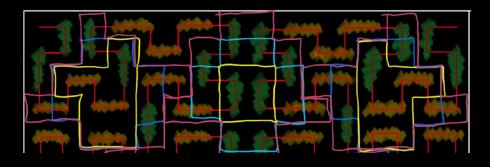


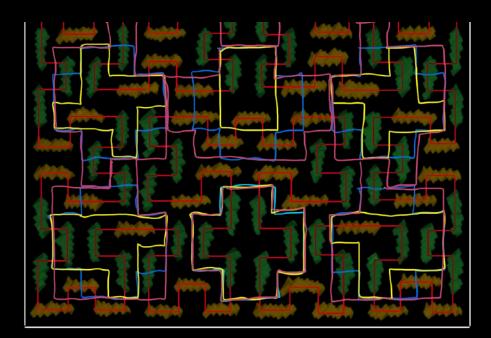
- CHH Dominoes
 - found on Amazon
 - asked them directly, but they don't sell wholesale
 - they'll get back to me with info on where else I might be able to find them





dots in other dots in other orientation Staying "inside" dots going "ortside"



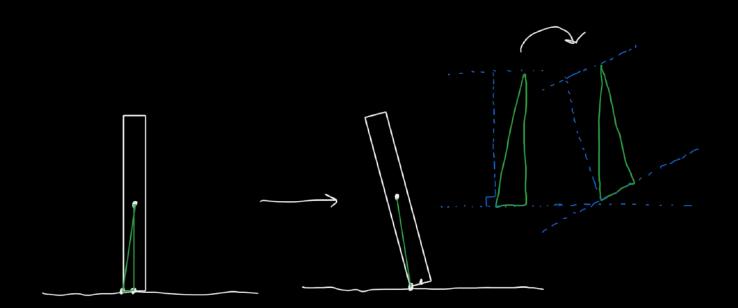


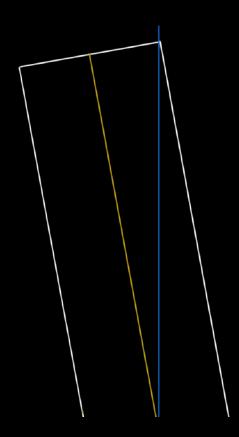
CHH standard domino dimensions: 1.92" x 0.95" x 0.37"

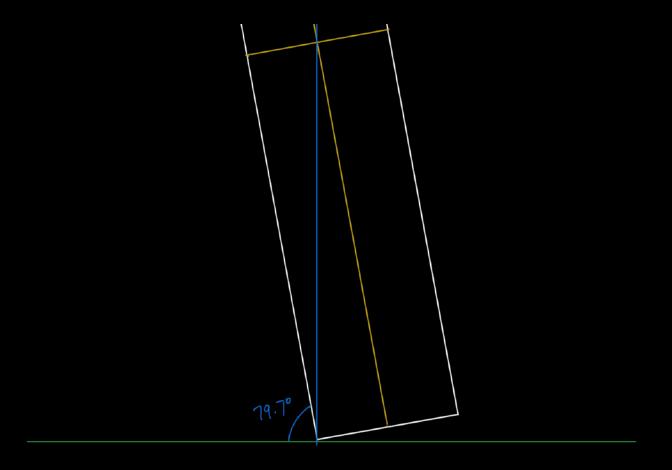
- Center of mass at: (0.96", 0.475", 0.185")
- Triangle from middle of lower edge to middle of lower side to center of mass has side lengths:
 0.96", 0.185", 0.978"
- So, angle domino has to tip to be perfectly in balance is: sin^{-1}(0.185/0.978) = 10.94° = 0.191 rad
- My (small scale) domino will be 10.08" x 20.79" x 2.52", so displacement (arc) at the top will be: 10.94/360 * 2pi(20.94") = 4.00"
 - But that's not from vertical.
- IMPORTANT: The above is wrong because my domino of dice doesn't have the same aspect ratio!
- REDO, for my domino of dice:
 - Dimensions: 10.08" x 20.79" x 2.52"
 - Center of mass at: (5.04", 10.40", 1.26")
 - Triangle from middle of lower edge to middle of lower side to center of mass has side lengths: 10.40", 1.26", 10.48"
 - So, angle domino has to tip to be perfectly in balance is: $sin^{-1}(1.26/10.48) = 6.91^{\circ} =$

0.121 rad

- Displacement (arc) at the top will be: 6.91/360 * 2pi(20.94") = 2.53"
 - But that's not from vertical.
- Displacement (arc) at the bottom will be: 6.91/360 * 2pi(2.52") = 0.30"
 This is from horizontal.
- If I make it 6 dice thick instead of four, to more closely match the CHH domino dimensions:
 - Dimensions: 10.08" x 20.79" x 3.78"
 - Center of mass at: (5.04", 10.40", 1.89")
 - Triangle from middle of lower edge to middle of lower side to center of mass has side lengths: 10.40", 1.89", 10.57"
 - So, angle domino has to tip to be perfectly in balance is: sin^{-1}(1.89/10.57) = 10.3° = 0.180 rad
 - Displacement (arc) at the top will be: 10.3/360 * 2pi(21.13") = 3.80"
 - But that's not from vertical.
 - Displacement (arc) at the bottom will be: 10.3/360 * 2pi(3.78") = 0.69"
 - This is from horizontal.







https://www.pagat.com/domino/math.html

Helpful reference for moth of dominoes, especially trains and circular trains

From above.

$$[U, V, V] (Mongn [m, V)$$
- Write (n_{ia}, n_{ib}) for one tile,
where $i = 1, ..., M$ is an index for
the domino
 $[0, 0]$ set has 1 domino
 $[1, 1]$ set has 3
 $[2, 2]$ set has 6
 $[3, 3]$ set has 10 because dominant
 $[4 \text{ dom index} = \binom{m+1}{2} = \frac{(m+1)!}{2!(E^{m+1}]^{-2}!} \equiv M$
- A train (i.e. a sequence using
 $a||$ tiles) is
 $(n_{ia}, n_{ib}), (n_{2a}, n_{2b}), ..., (n_{Ma}, n_{Mb})$
where $n_{ib} = n_{2a}, n_{2b} = n_{3a}, ..., and$
in general $n_{ib} = n_{(i+1)a}$ for $i = 1, ..., M^{-1}$
- Let we start with converte cases:
 $f_{ia} = 2.7$:

$$M = 6$$

$$N_{ia} = \Lambda_{ik} = 0, 1, 2$$

$$Suppose \Lambda_{ia} = j \text{ and } \Lambda_{ik} = k. Then,$$

$$n_{2a} = k$$

$$Notake: 0, 1, 2, ..., M$$

$$j \in T$$

$$Vgh, my notation SUCKS,$$

$$Let's try from scratch...$$

$$Set: [N, N] = \# \text{ in } Set: \binom{N+1}{2} = \frac{(n+1)!}{2!(n+1)!2!} = r$$

$$Tike: (\Lambda_{a}, \Lambda_{b}): \quad \Lambda_{a} = \Lambda_{b} = 0, ..., N \quad i = 1, ..., D$$

$$Digits: d_{a}, ..., d_{N} \iff 0, ..., N$$

$$\# Tikes with Digit: d_{k} \Rightarrow (N+1) + 1 = N+2$$

$$Horm [et's See if the above helps at all...$$

Not sure this is northubile ...

For construction:

Domino of Dice

- Each dice is 0.63" - Domino is 33×16×6 dice - Interior foam is: - 31×14×4 dice - 19.53 × 8.82 × 2.52"

Dice of Downnoes

- From measuring w/ the real dominoes: - Sides should be 15.625 × 15.625"

Gregory-Leibniz series: $\frac{T}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - \dots$ $\Box \longleftrightarrow \frac{1}{1!} \stackrel{\bullet}{\longrightarrow} \frac{2}{1!}, \text{ etc.}$ Dominaes are base 7 (digits O through 6). base 10: 0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... base 7: 0,1,2,3,4,5,6,10,11, 12, 13, 14, ... A number in base x mod x is the lest digit of that number. Eq. 13 in base 10 mod 10 is 3, and 13 in base 7 mod 7 is 3. [Note that here I mean "13 in base 7" as the number, not "13" (which we needly implicitly assume is in base 10) in base 7, which would be "16" (in base 7) [. So let's take this series: 11 = 1 - 3 + 5 - 17 + 19 - ... and make it expressible in domines First, note we can always write eg. $\frac{1}{3} = \frac{2}{2} = \frac{3}{9} = \cdots$ So, by convention, as soon as the denominator exceeds +6 (the highest number on a domino), we'll do the following: 1. Turners the numerator he and and

adjust the denominator so the
fraction is quivalent. E.g.
$$= \frac{1}{7}$$
 goes
to $\frac{2}{74}$, and $\frac{6}{54}$ gres to $\frac{7}{63}$.
2. Express both the numerator and
denominator in base 7 mod 7.
E.g. $= \frac{2}{14}$ goes to $= \frac{2}{20}$ and then $= \frac{2}{0}$,
and $= \frac{7}{63}$ goes to $= \frac{10}{120}$ and then $= \frac{0}{0}$.

In this notation, we have:

 $\frac{\pi}{4} \rightarrow \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{2}{9} + \frac{2}{9} - \frac{2}{1}$ (lase 10) + 3 - 3 + ... Homm, don't think this is what I want ... Let me toy again: Suppose I write all the fractions in bet And now suppose I "domino encode" this by doing the following: 1. Write the denominators mod 7, thereby keeping only the rightmost digit. at it of the denominator 2. Add ther left digit(s) to the numerobr (eventually writing them mod 7 also when necessary). 3. "Flip" the domino "fraction" when there's a minus sign.

In other words: $\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{10} + \frac{1}{12} - \frac{1}{14} + \frac{1}{16} - \frac{1}{21} + \dots$ (i) $\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{6} + \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{1} + \cdots$ $\binom{3}{1} \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{2}{6} + \frac{2}{2} - \frac{2}{7} + \frac{2}{6} - \frac{3}{1} + \cdots$ (3)(I can of course also start with 4 in the numerator so the sum equals TT.) Because the sum is conditionally convergent, I can rearrange the values to sum to My real number (including ± 00!) - see the Riemann series theorem. Equivalently, I can rearrange any finite number of "dominoes", knowing that the rest could be arranged so that the sun still quests TT. Thus, I should be able to rearrange the dominaes in a train, but I should check some things first: - Do all digits occur with equal frequency? From the result of (2) above : . The denominator goes 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, ... so yes there. · The numerator goes 1. 1. 1.

$$\begin{array}{c} 2_{1}$$

$$\begin{bmatrix} [0,0]'\\ [0,1]^{n}, [1,1]'\\ [0,2]^{n}, [1,2], [2,2]^{n}, [2,3]^{n}, [2,3]'\\ [0,3]^{n}, [1,3]^{n}, [2,3]^{n}, [2,3]', [2,3]'\\ [0,3]^{n}, [1,3]^{n}, [2,4]^{n}, [2,4]^{n}, [2,4]^{n}, [2,5]^{n}, [5,5]'\\ [0,5]^{n}, [1,5]^{n}, [2,5]^{n}, [2,5]^{n}, [2,5]^{n}, [5,5]'\\ [0,6]^{n}, [1,6]^{n}, [2,6]^{n}, [3,6]^{n}, [4,6]^{n}, [5,5]^{n}, [5,6]^{n}, [5,6]'\\ [0,6]^{n}, [1,6]^{n}, [2,6]^{n}, [3,6]^{n}, [4,6]^{n}, [5,5]^{n}, [5,6]^{n}, [5,6]^{n}\\ [0,6]^{n}, [1,6]^{n}, [2,6]^{n}, [3,6]^{n}, [4,6]^{n}, [5,5]^{n}, [5,6]^{n}, [5,6]^{n}\\ [0,6]^{n}, [1,6]^{n}, [2,6]^{n}, [3,6]^{n}, [4,6]^{n}, [5,6]^{n}, [5,6]^{n}\\ [0,6]^{n}, [1,6]^{n}, [3,6]^{n}, [4,6]^{n}, [5,6]^{n}, [6,6]^{n}\\ \hline \end{pmatrix}$$
Not gale — doubles appear 1/2 as often
$$Lets try the John Wellis product:$$

$$\frac{T}{2} = \left(\frac{a}{1}, \frac{2}{3}\right) \cdot \left(\frac{a}{3}, \frac{a}{5}\right) \cdot \left(\frac{6}{5}, \frac{6}{-7}\right) \cdot \left(\frac{8}{5}, \frac{8}{7}\right)$$

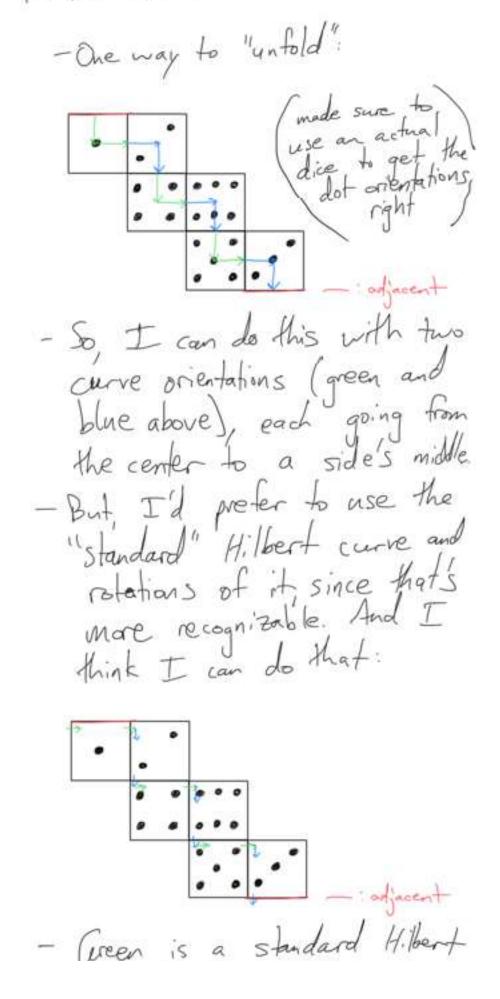
$$\cdot \left(\frac{18}{9}, \frac{18}{17}\right) \cdot \left(\frac{10}{17}, \frac{20}{21}\right) \cdot \left(\frac{22}{21}, \frac{22}{23}\right) \cdot \left(\frac{24}{22}, \frac{24}{25}\right) \cdots$$

$$= \prod_{n=1}^{\infty} \frac{4n^{n}}{4n^{n}-1} = \prod_{n=1}^{\infty} \left(\frac{2n}{2n-1}, \frac{2n}{2n+1}\right)$$
Writing the fractions mod 7:
$$\left[\frac{\left(\frac{2}{1}, \frac{2}{3}\right) \cdot \left(\frac{4}{3}, \frac{5}{5}\right) \cdot \left(\frac{6}{5}, \frac{6}{5}\right) \cdot \left(\frac{1}{2}, \frac{1}{2}\right)}{\left(\frac{3}{2}, \frac{3}{4}\right)} \cdots$$
What I like about this is it networly forms a train!
$$\left[\frac{\left(1,2\right)\left[\frac{2}{3}, \frac{1}{3}\right]\left[\frac{9}{5}, \frac{5}{5}\right]\left[\frac{6}{5}, \frac{6}{5}\right]\left[\frac{6}{5}, \frac{7}{5}\right]\left[\frac{7}{2}, \frac{3}{4}\right]}{\left(\frac{1}{2}, \frac{2}{3}\right)\left[\frac{1}{2}, \frac{2}{3}\right]^{n}} \cdots$$
NI unit I didn't short by writting in base 7.

 $\left(\frac{1}{2},\frac{1}{2}\right)$ $\left(\frac{2}{4},\frac{3}{6}\right)$ $\left(\frac{5}{6},\frac{5}{1}\right)$ · (+++)·(=++)·(=++)·(=++)·(=++)· · (2: 2)· (4 · 4)· (6 · 6) (then, whole above sequence repeats) This looks promising! - Do all digits occur w/ equal frequency? - Do all dominees occur w/ equal frequency. 10,0] [0,1], [1.]ª [0,2], [1,2], [2,2] $[0,3]^{i}$, $[1,3]^{i}$, $[2,3]^{i}$, $[3,3]^{2}$ [0,4], [1,4], [2,4], [3,4], [4,4] [0,5], [1,5], [2,5], [3,5], [4,5], [5,5]= [0,6]" [1,6]", [2,6]" [3,6]", [4,6]" [5,6]" [6,6]" (with Gogery-Leibniz) So like before, not quite but close. The doubles appear 1/2 us often But this has a huge advantage over Gregory-Leibniz: it naturally forms a train, with a little "flipping"!

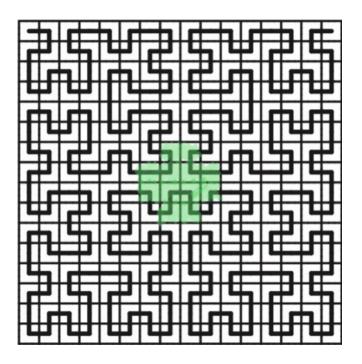
Now I need to sort out what Hilbert - type curve I should use

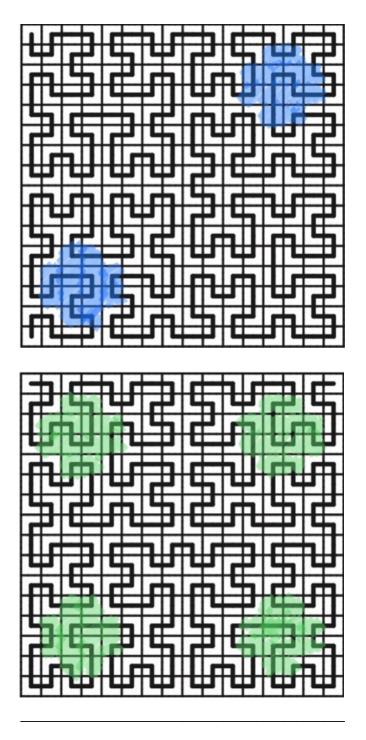
to the the cuoc ...

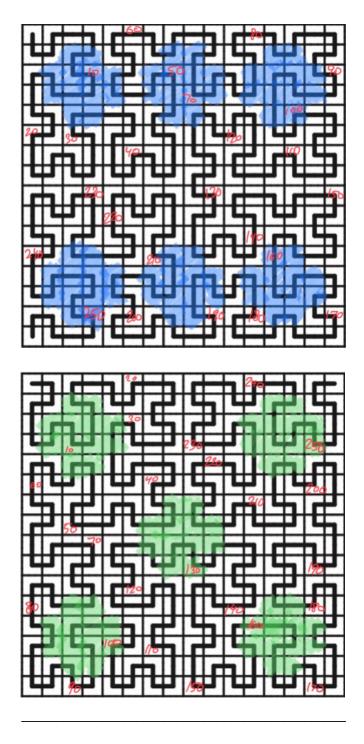


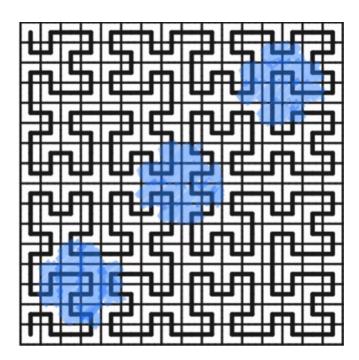
curve starting in the upper left corner and ending in the upper right. Blue is that rotated 90° right.

(Green is top. Blue is bottom) - Now, I need to determine which dominoes I'll use to see if I have enough. Let's start by getting the positions of the dots. I, 4, and 5 are green type; 2,6, and 3 are blue type.









- I'm going to label the dot positions so I can talk about dots in the same position on analtiple faces: gA gB gC gA gB gC gE gF gG LA 6B 6C bE bFbG green blue (gB and gF are never used) - For type green, label the squares 1,2,3,... starting in the upper left and for type blue, same.

- Let's write out which quares each dot includes: 2 gA: 7-14, 31-32, 54-55 0 • g B: (N/A) 2°gC: 202-203, 225-226, 243-250 2 gD: 42-44, 125, 127-130, 132, 213-215 2 gE: 75-76, 82-83, 89, 92-97, 100 0 gF: (N(A) 2 gG: 157,160-165, 168, 174-175, 181-182 hA: some as al

· 6B · 48-52, 63, 68-72, 123 · bC: some g6 • bD: Same as gD • bE: same as gA • bF: 134, 185-189, 194, 205-209 · bG: same as gE - The Wallis product is:

$$\frac{\pi}{1} \frac{4n^2}{4n^2-1} = \frac{\pi}{n^2} \left(\frac{2n}{2n-1}, \frac{2n}{2n+1} \right)$$

I'm staying true to the denominators of this, but
I'm adding 1 to the
numerators for every multiple
of 7 in n. (And I'm
writing the fractions
Mod 7.) So, my "domino
train" product is:

$$\frac{(2n + \frac{l(n-1)/2}{7}) \mod 7}{(2n-1) \mod 7} \frac{(2n + \frac{l(n-1)/1}{7}) \mod 7}{(2n+1) \mod 7}$$
. there $\lfloor \frac{n-1}{7} \rfloor$ is the foor

function (or integer division) $p \neq \frac{n-1}{7}$. For n-1 = 0, ..., 6, that's O. For n-1=7..., 13, Mat's I. Etc. - Each of these terms con De considered a 'domino". though they'll be offset by one since I'm asing the (more interesting looking) tiling with half dominoes at the beginning and end

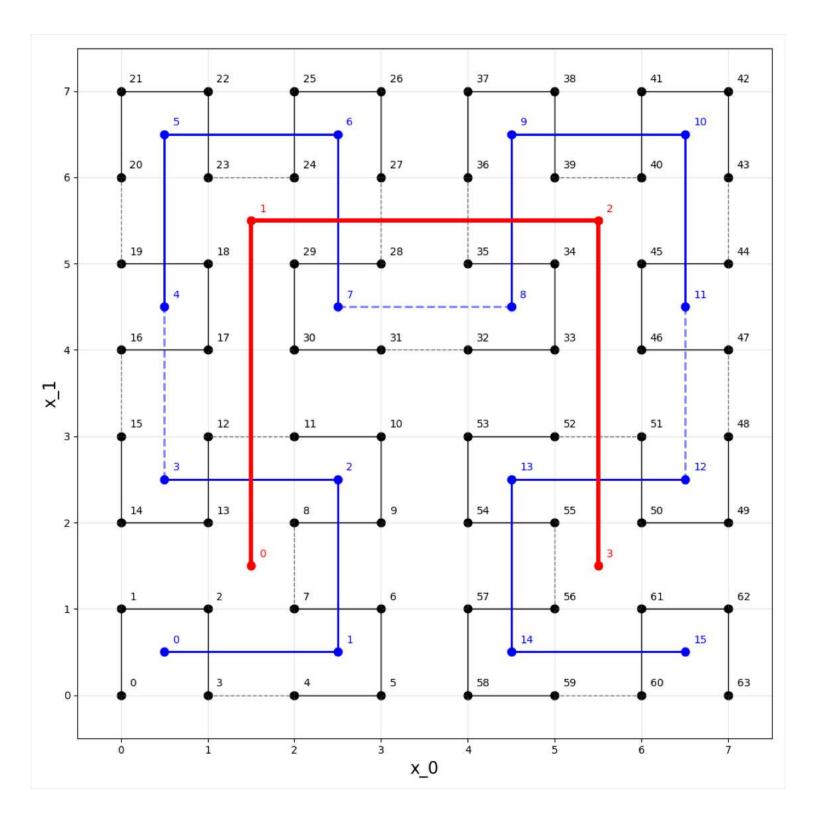
Manually counting from my spreadsheet ... - : type 1 tiling Full black dominoes - : type 2 tiling -: total jo,07° $[0,1]^3, [1,1]^2$ $\begin{bmatrix} 0, 2 \end{bmatrix}^{4}, \begin{bmatrix} 1, 2 \end{bmatrix}^{2}, \begin{bmatrix} 2, 2 \end{bmatrix}^{2}$ [0,3], [1,3], [2,3], [3,3] $[0,5]^{\circ}_{,}[1,5]^{\circ}_{,}[2,5]^{2}_{,}[3,5]^{2}_{,}[1,5]^{2}_{,}[5,5]^{\circ}_{,}$ $[0, 6]^{3} [1, 6]^{2}, [2, 6]^{9} [3, 6]^{2}, [4, 6]^{3} [5, 6]^{9} [6, 6]^{3}$ Partial black dominoes $\begin{bmatrix} 0, ? \end{bmatrix}^{9}, \begin{bmatrix} 1, ? \end{bmatrix}^{8}, \begin{bmatrix} 2, ? \end{bmatrix}^{9}, \begin{bmatrix} 3, ? \end{bmatrix}^{9}, \begin{bmatrix} 4, ? \end{bmatrix}^{8}, \begin{bmatrix} 5, ? \end{bmatrix}^{7}, \begin{bmatrix} 6, ? \end{bmatrix}^{3}$ Full white dominoes

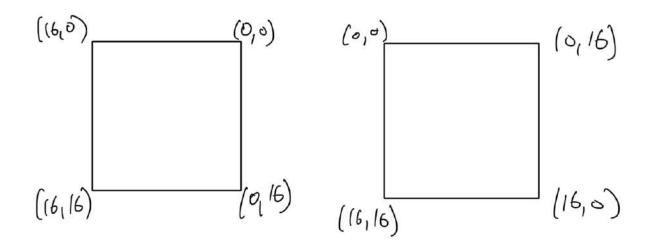
[0,0]4

[0,1], [1,1] $\begin{bmatrix} 0, 2 \end{bmatrix}^{4}, \begin{bmatrix} 1, 2 \end{bmatrix}^{4}, \begin{bmatrix} 2, 2 \end{bmatrix}^{3}$ $\begin{bmatrix} 0, 3 \end{bmatrix}, \begin{bmatrix} 1, 3 \end{bmatrix}, \begin{bmatrix} 2, 3 \end{bmatrix}, \begin{bmatrix} 3, 3 \end{bmatrix}^{2} \\ \begin{bmatrix} 0, 3 \end{bmatrix}, \begin{bmatrix} 1, 3 \end{bmatrix}, \begin{bmatrix} 2, 3 \end{bmatrix}, \begin{bmatrix} 1, 3 \end{bmatrix}^{2} \\ \begin{bmatrix} 1, 4 \end{bmatrix}, \begin{bmatrix} 1, 4 \end{bmatrix}, \begin{bmatrix} 2, 4 \end{bmatrix}, \begin{bmatrix} 3, 4 \end{bmatrix}, \begin{bmatrix} 1, 4 \end{bmatrix}, \begin{bmatrix} 1,$ Partial white dominoes $\begin{bmatrix} 0, ? \end{bmatrix}^{6}, \begin{bmatrix} 1, ? \end{bmatrix}^{8}, \begin{bmatrix} 2, ? \end{bmatrix}^{13}, \begin{bmatrix} 3, ? \end{bmatrix}^{9}, \begin{bmatrix} 4, ? \end{bmatrix}^{8}, \begin{bmatrix} 5, ? \end{bmatrix}^{8}, \begin{bmatrix} 6, ? \end{bmatrix}^{9}, \begin{bmatrix} 4, ? \end{bmatrix}^{10}, \begin{bmatrix} 5, ? \end{bmatrix}^{10}, \begin{bmatrix} 6, ? \end{bmatrix}^{10}, \begin{bmatrix} 10, ? \end{bmatrix}^{1$ 111 (So crazy the [1,1] domino never appears in white! I double checked this, and it looks to be right.) Shoot, I actually need to count

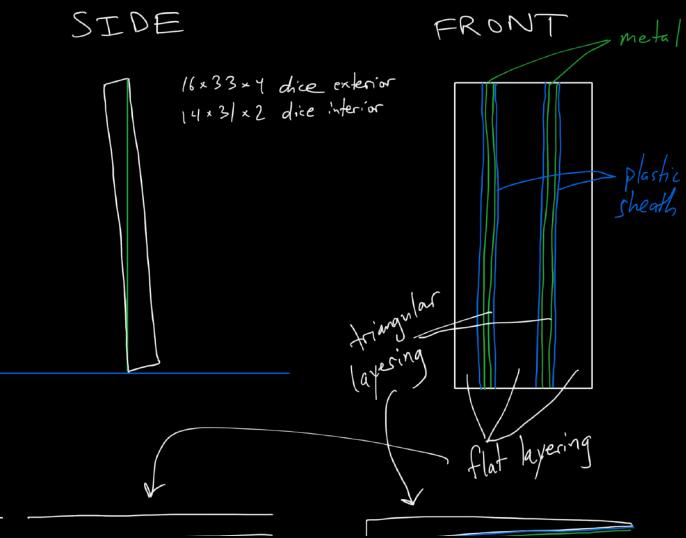
on a per dot basis because they occur with different frequencies

Helpful Python library: https://pypi.org/project/hilbertcurve/

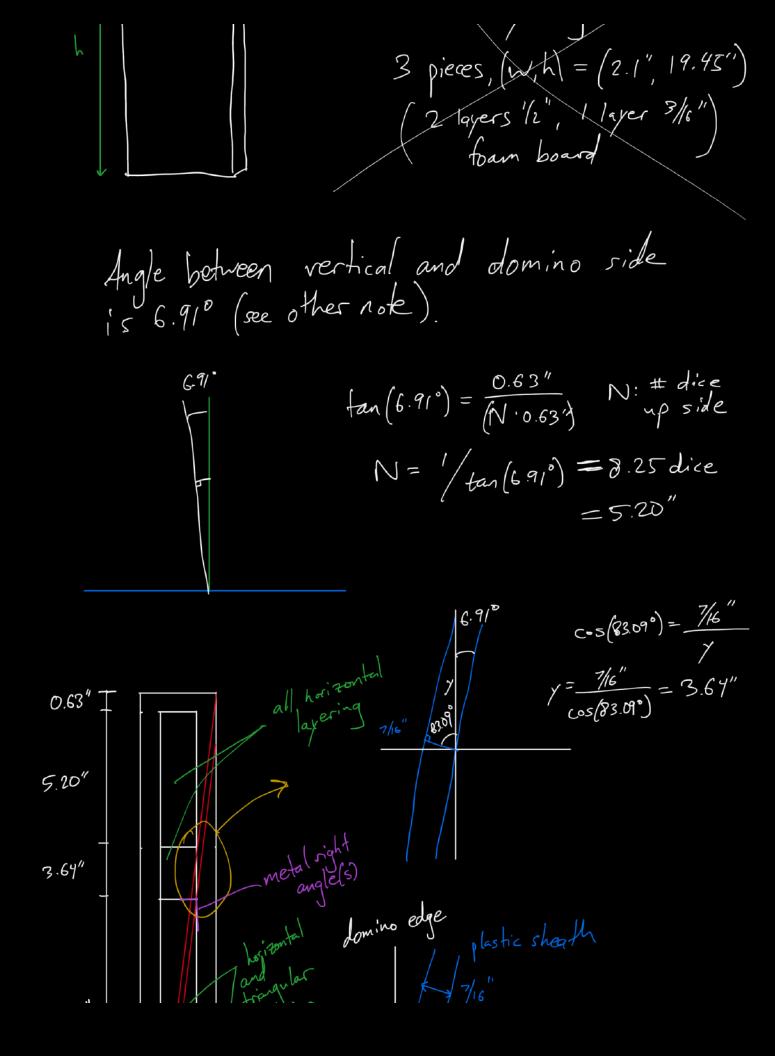


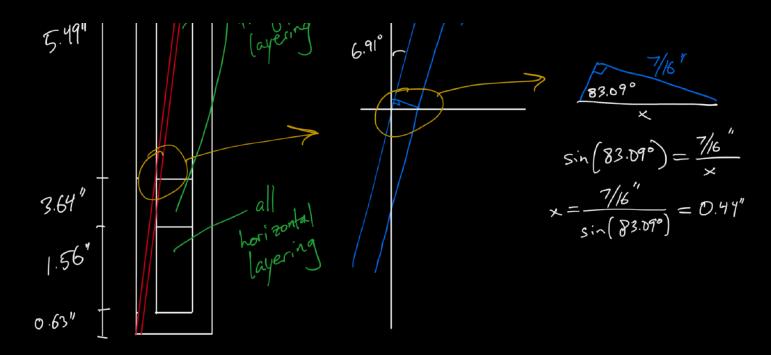


Construction

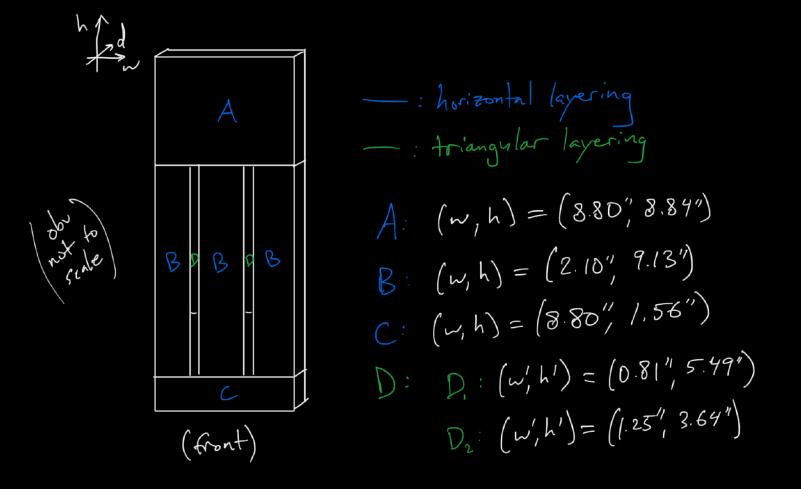


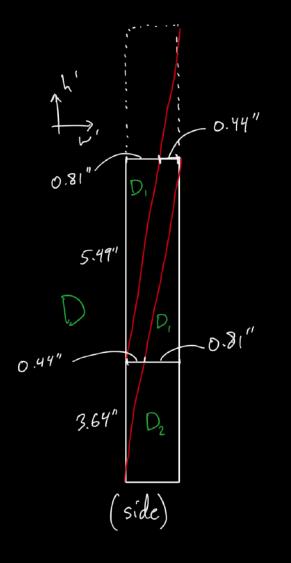
 $\frac{1}{3}$ /16" $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ (side) $\frac{1/2}{1/2}$ (side) (front) Measurements on groups of actual dice: 2 across: 1.25" 4 across: 2.50" 14 across: 8.80" 16 across: (0.05" 3 across: 19.451 33 across: 20,70" Dimensions of internal structure: 1.25" × 8.80" × 19.45" (overall) width of wire channel: 1.25" height of wire channel: 7/16" ~ 0.44" - horizontal layering:

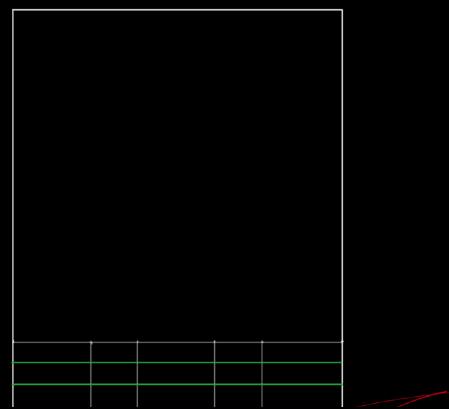


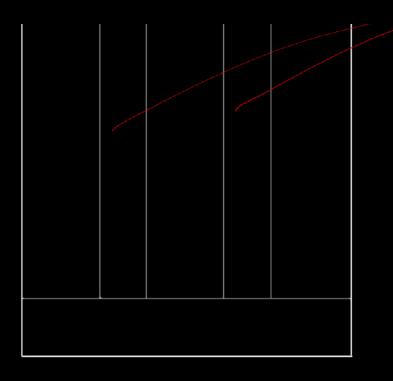


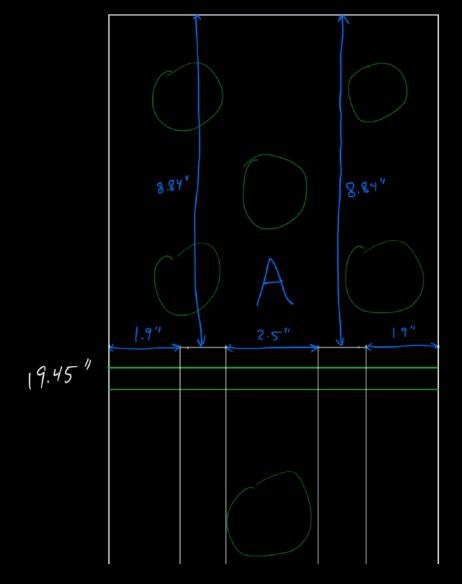
All of the above means:

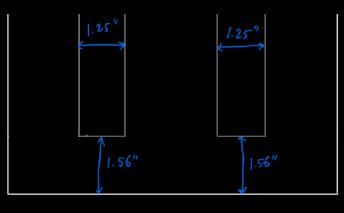






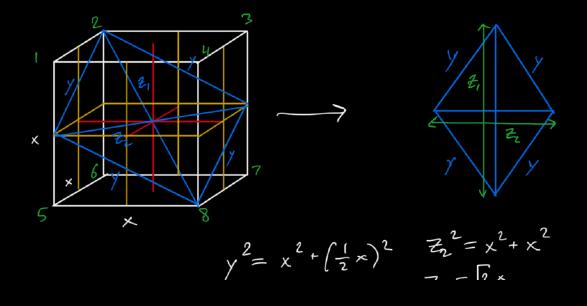






3.80"

Measurements on groups of actual dominoes. - 8 end to end: 157/16" -16 side to side: 152/16" - 4 end to end, 8 side to side: 154/16" The Hilbert curve tiling I'm going to use has columns that vary between 2 and 6 end to end, but the bittom row has 8 and to end, so I should use that as the dimension for the square sides For construction of the dice of dominaes:



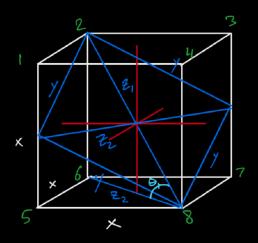
$$y = \frac{\sqrt{5}}{2} \times \qquad z_{1}^{2} = x^{2} + z_{2}^{2}$$

$$z_{1} = \sqrt{3} \times \qquad z_{1}^{2} = x^{2} + z_{2}^{2}$$

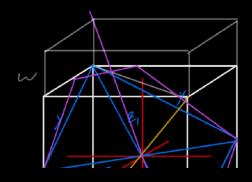
$$z_{1} = \sqrt{3} \times \qquad z_{2} = \sqrt{3} \times \qquad z_{1} = \sqrt{3} \times \qquad z_{2} = \sqrt{3} \times \qquad z_{1} = \sqrt{3} \times \qquad z_{2} = \sqrt{3} \times \qquad z_{1} = \sqrt{3} \times \qquad z_{2} = \sqrt{3} \times \qquad z_{1} = \sqrt{3} \times \qquad z_{2} = \sqrt{3} \times \qquad z_{2}$$

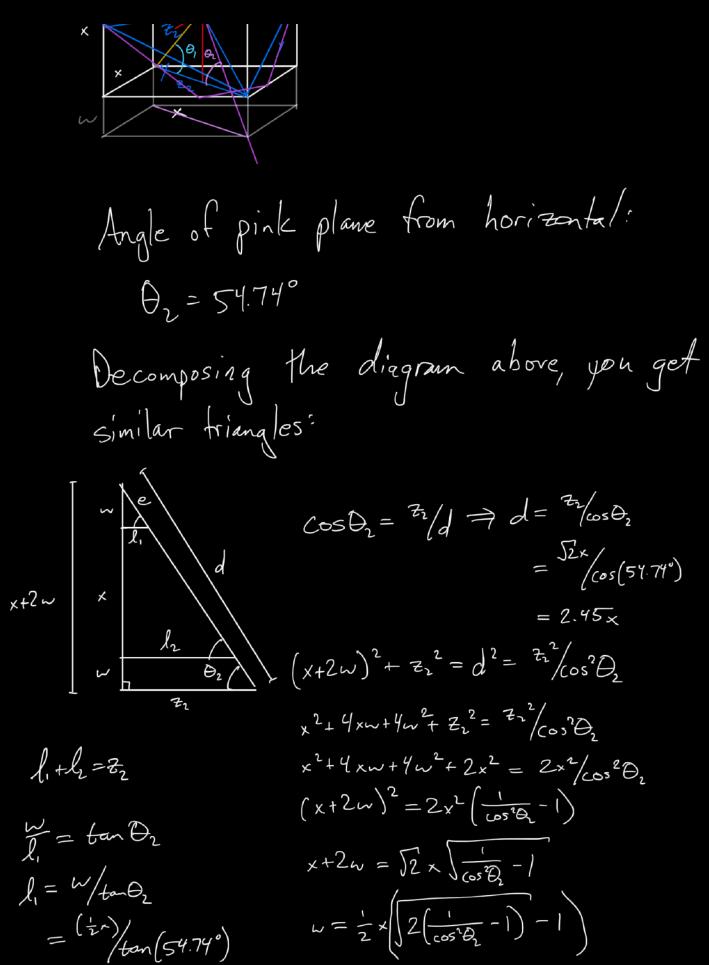
It might not be an issue, but it'll make the piece not quite balanced, and it'll make in 1 1-1: chonor for the metal rod

the internal plastic stopped the piece's stability. mount askew, glso limiting the piece's stability.



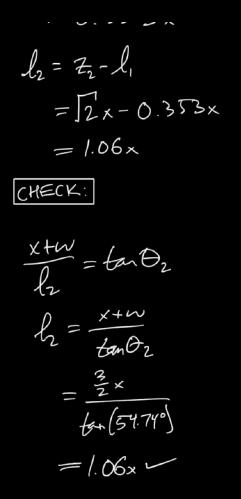
Angle of blue plane from horizontal: $\Theta_{1} = \sin^{-1}(x/z_{1}) = \sin^{-1}(x/\sqrt{3}x) = \sin^{-1}(\sqrt{3}/3) = 35.26^{\circ}$ That means a line perpendicular to it will be at 54.74° from horizontal. (And, equivalently, a plane would need to be at 54.740 to be I to a line at 35.26°, which is the case I'm considering.)





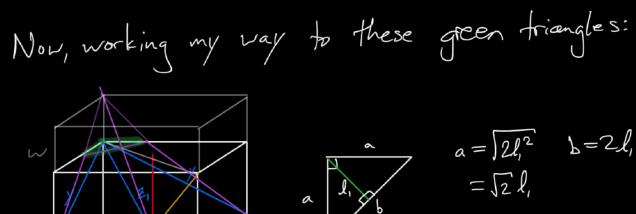
 $= - \times (7 (2.00 - 1) - 1)$

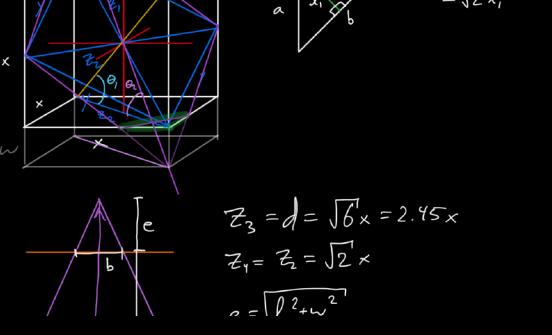
= 17 353×

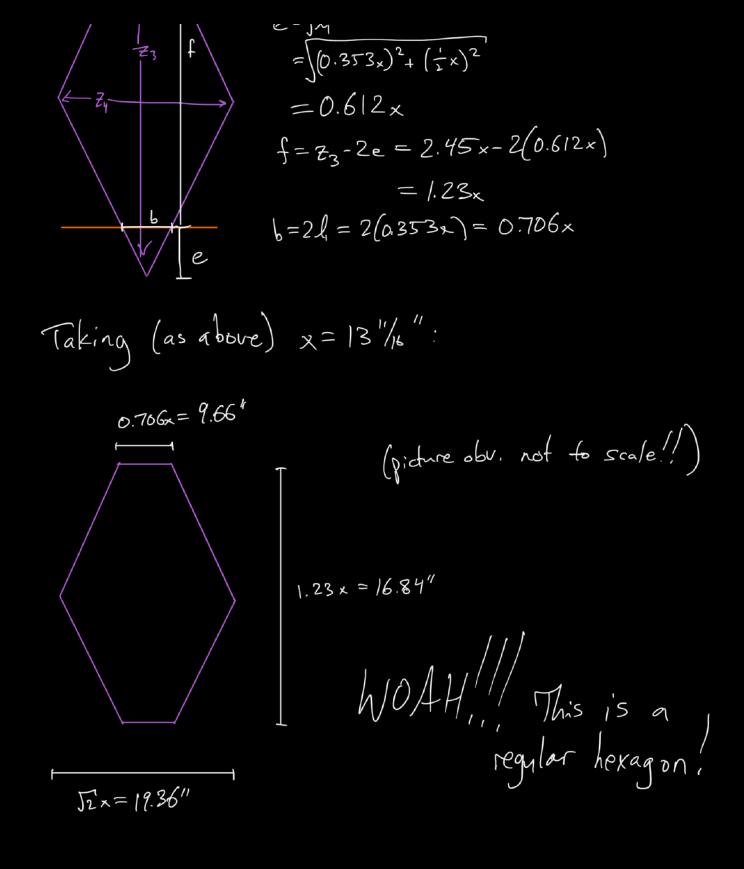


2
$$(f(x) = 1)^{2}$$

 $= \frac{1}{2} \times$
CHECK:
 $(x+2w)^{2} + z_{2}^{2} = d^{2}$
 $(2x)^{2} + (J_{2}^{2}x)^{2} = (2.45x)^{2}$
 $6x^{2} = (2.45x)^{2}$
 $2.45x = 2.45x$



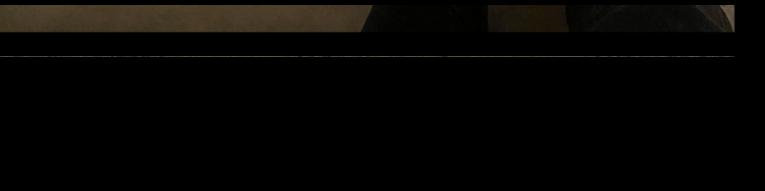




Both of the below are Hilbert curves. I like the first because it doesn't have as boring of regularities (the second's bottom row is all of the same orientation!) and because it has a more consistent mix of horizontal/vertical for each row/column so that it's closer to a perfect square.

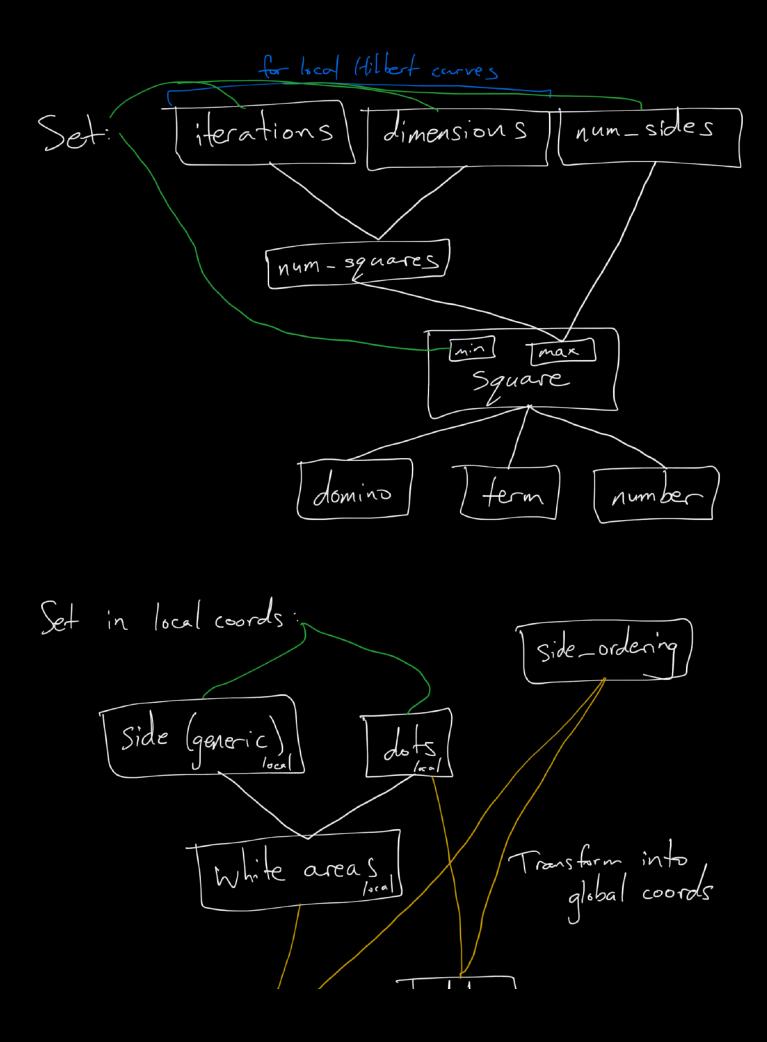
																	-			
	•		-			•		•		000	00		•							
•			•	•	•	000		_	0 0	000	000	00		T	0 0				0 01	
		•	•	C	,					000	00	000	000			•	•			
			•				•		0 0		•					•	•••			
		0				T	1	+	0 0	-		00	00	000			0			1
						•	•							000		•	•		• •	1
	1	•	•	•	•		000	D		•					•		000			
		0		0	0	00		D	000	0		0 0	0 0	-	•		000			
					9 . 6	00			000	0					° .		000	•	•	
		•		•		Y		5	0						0.0	•	0			
		•	•	•	•	•	•		•			•	•		• •		•	00		
						•			•••	••		•••		00	•••		000			
			-			00			•		•	0	• •							T
		-		00	-			0 0		-	0	0		Ta	000			0 0		
				00							100000	0		0					•	
		•	,	•	201	_					•	•								
		-		•	-		-	0 0	000	-	T	+		Í.						
		•		C				000			•	•		•	•	00	• •			
			999	000	000					•	•	000			•••	•		•	•	-
/	ſ	•	•		•	•	•					•		000	000	•	•			
		•	-	•		•		-	•	Î	-			2					00	
			-		•		0	+	0	-		000		Ť	-	000		1		
		•		•	•	•	•					000	0		•			000	0	

•



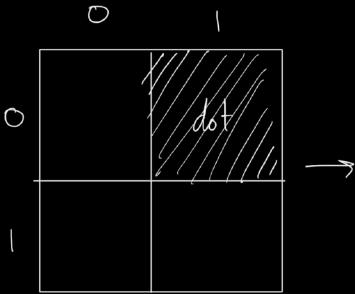
																				-	-
									-	-							0		0 0		000
•		•			•	•	0			0			•	•	•	000			00		000
•						•			•							0	-				
-	-				01	•		C		0				•		0 (D	-			
			-									•	•		0 0			0	0 0		
	-	0	0	-	-	-	-		10	0			0	•			-			0	
			•		-		-		0				•	•					0	•	
	-	•		•	_	•	_		-	-		000	0			0 0	5			0	•
			•	•	•	•	•						0				D			•	•
				•		•	•	•	•	0		000								0	0
		10		0		0	0		0		0_0		• •	•	•	0		000	000	•	
								•			• •				-	•					
-	-	-		-		0			5	•			0.0	0 0				•	000	000	
		-				00	00				•	•					+		0 0		
		C		-		0	-	-	+	+	-	1000		0 0		T					0 0
		e	•			-		•			•	000	·					•			0 0
			0	-	0					-)	•	1000	+	0 0)			0.0
	-	0	•	•							•			0 0					•	•	00
	•				•					_		000	-			10		-	10 0		
		T		T		•		•	0		•			•		-					
	•									•		-		•		0	•		100		
-			-					•							•	•	•		000	0	•
					•				00	••					C		0		000	00	000
		+		+	-		-	-	010			1	0.0		0	0			000		
					•	_	•	-		•							•		000	0	•
	-	_		-		1	-	-		-				-		10					
	-	•			•	"	•	•	•	•	•				•	1					
	•				•		•	•	•	0	•	0	00	-	+	1	-	-	100	-	1
	100	10)			•		•			•		000	•					1		
	•		•		6		•	1		•	0		0.000		0	1	-	-	100	-	
				0						,	0	• •	0	0		•	00	•	00	•	
•	•		•						•					•	0	0			0 00	0	
9		14		+) (0			0	D	D		00				0		
																	99		•	•	
					_			-			-			-			-	-			
Ī	9 (•									ື	999	000	0	
				ē									0	0	•	00	0	0	00	00	0

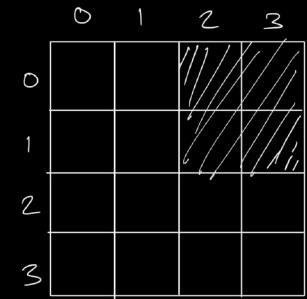
•



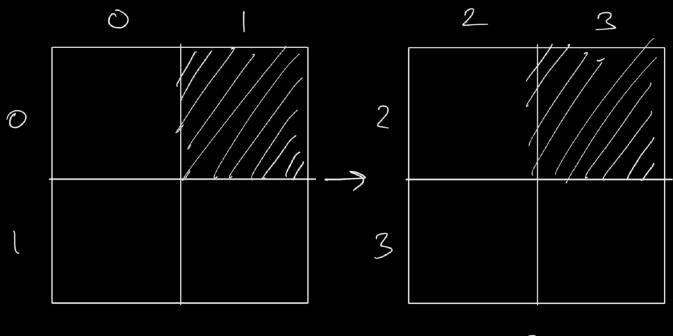
white areas

Aots alobal





dot: [[o, i]]



do f : [[o, i]]

dot: [[2,3]]